An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions
نویسندگان
چکیده
منابع مشابه
Progressively interactive evolutionary multiobjective optimization
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Ankur Sinha Name of the doctoral dissertation Progressively Interactive Evolutionary Multiobjective Optimization Publisher Aalto University School of Economics Unit Department of Business Technology Series Aalto University publication series DOCTORAL DISSERTATIONS 17/2011 Field of research Decision Making and Optimization Abst...
متن کاملInteractive Decomposition Multi-Objective Optimization via Progressively Learned Value Functions
Decomposition has become an increasingly popular technique for evolutionary multiobjective optimization (EMO). A decomposition-based EMO algorithm is usually designed to approximate a whole Pareto-optimal front (PF). However, in practice, the decision maker (DM) might only be interested in her/his region of interest (ROI), i.e., a part of the PF. Solutions outside that might be useless or even ...
متن کاملInteractive Multiobjective Optimization Using a Set of Additive Value Functions
In this chapter, we present a new interactive procedure for multiobjective optimization, which is based on the use of a set of value functions as a preference model built by an ordinal regression method. The procedure is composed of two alternating stages. In the first stage, a representative sample of solutions from the Pareto optimal set (or from its approximation) is generated. In the second...
متن کاملExperiments with classification-based scalarizing functions in interactive multiobjective optimization
In multiobjective optimization methods, the multiple conflicting objectives are typically converted into a single objective optimization problem with the help of scalarizing functions and such functions may be constructed in many ways. We compare both theoretically and numerically the performance of three classification-based scalarizing functions and pay attention to how well they obey the cla...
متن کاملEvolutionary Optimization of Dynamic Multiobjective Functions
Many real-world problems show both multiobjective as well as dynamic characteristics. In order to use multiobjective evolutionary optimization algorithms (MOEA) efficiently, a systematic analysis of the behavior of these algorithms in dynamic environments is necessary. Dynamic fitness functions can be classified into problems with moving Pareto fronts and Pareto sets having varying speed, shape...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Evolutionary Computation
سال: 2010
ISSN: 1089-778X,1941-0026
DOI: 10.1109/tevc.2010.2064323